Extensions 1→N→G→Q→1 with N=C23 and Q=C32⋊C6

Direct product G=N×Q with N=C23 and Q=C32⋊C6
dρLabelID
C23×C32⋊C672C2^3xC3^2:C6432,558

Semidirect products G=N:Q with N=C23 and Q=C32⋊C6
extensionφ:Q→Aut NdρLabelID
C23⋊(C32⋊C6) = C2×C62⋊S3φ: C32⋊C6/C32S3 ⊆ Aut C23186+C2^3:(C3^2:C6)432,535
C232(C32⋊C6) = C2×C62⋊C6φ: C32⋊C6/C3⋊S3C3 ⊆ Aut C23186+C2^3:2(C3^2:C6)432,542
C233(C32⋊C6) = C2×He36D4φ: C32⋊C6/He3C2 ⊆ Aut C2372C2^3:3(C3^2:C6)432,377

Non-split extensions G=N.Q with N=C23 and Q=C32⋊C6
extensionφ:Q→Aut NdρLabelID
C23.(C32⋊C6) = C625Dic3φ: C32⋊C6/C32S3 ⊆ Aut C23366-C2^3.(C3^2:C6)432,251
C23.2(C32⋊C6) = C624C12φ: C32⋊C6/C3⋊S3C3 ⊆ Aut C23366-C2^3.2(C3^2:C6)432,272
C23.3(C32⋊C6) = C623C12φ: C32⋊C6/He3C2 ⊆ Aut C2372C2^3.3(C3^2:C6)432,166
C23.4(C32⋊C6) = C22×C32⋊C12central extension (φ=1)144C2^3.4(C3^2:C6)432,376

׿
×
𝔽